
MASTERMIND SOLVER
SPRING TERM ASSIGNMENT

SUSHANTH KOLLURU

Algorithms Considered and Used

After looking through several papers, two algorithms were finalised on. Temporel’s algorithm, which uses a

combination of a ‘heuristic’ and ‘hill climbing’ approaches, is being used for smaller values and Singley’s

algorithm for the larger scaled solution.

Several algorithms were considered, the most obvious of which is Knuth’s. The issue with most of these

algorithms was either scalability or simplicity. Knuth’s algorithm, for example scales very poorly, as calculating

the next guess and running through all the possible solutions simply takes too much time and too many

resources. Temporel’s algorithm was intuitive, scalable and was ne of the better performing algorithms (with

respect to the average number of guesses).

However, for larger sets even the hill climbing heuristic algorithm will struggle with both time and moves. For

this project, a variation of Singley’s algorithm was used. This was primarily down to the speed of the algorithm

as well as the simplicity and efficiency. The algorithm is fairly straightforward to understand and has an

impressive average rate. Within this project, Singley’s algorithm was also used as a ‘backup’ algorithm for

when Temporel’s algorithm takes too long. This aspect will be explained in the section later on.

TEMPOREL’S ALGORITHM

Logic (copied from the paper):

1. We submit to the Code maker a random guess that we call the “Current Favourite Guess” (CFG).

2. From the CFG, we induce a new potential code (this is explained in the latter section)

3. If potential code is not consistent with all previous guesses, go to step 2 otherwise submit it as new

guess.

4. If submitted guess scores [0,0] then suppress from the pool of colours all the colours present in the

last submitted guess. Then find a new random combination (with the new pool of valid colours)

consistent with all previous guesses’ scores and set this new combination as new CFG and submit it to

the code setter.

5. If submitted guess score is as good as or better than CFG score then set this guess to be our new CFG

and also set the new score as best score.

6. If submitted guess scores [4,0], stop otherwise go to step 2.

SINGLEY ’S GREEDY SEARCH ALGO RITHM

1. The first m turns are to be used to determine the correct number of each colour appearing in the

secret code.

2. The number with the most black hits is then made into the “base”

3. Each index in then changed incrementally with values determined by whether a black hit has been

detected by that colour or not, and then a guess is submitted

4. Depending on the feedback, the next stage is determined:

a. If the no of black hits increases, the number that the index has been changed to is in the

right position

b. If the no. of black hits stays the same, the number in the index is yet to be determined and

more numbers need to be tested

c. If the no. of black hits decreases, the “base value” belongs at that index

 This is continued till the solution has been found.

GIVE FEEDBACK

Give feedback is a very important part of the program. It works by initially comparing each position from the

guess and the sequence and checking if they’re equal. If so, the black hit count is increased by one and the

elements of the black hits are “used” by being stored in the “ -used” vectors.

The next stage calculates white hits, and goes

through each possible combination. The

function elementPresence is then used. This

function goes through a vector and returns true

if the tested value is in the vector. If this is

passed, the check is then made to see if the two

elements match. If they do, the white hits

counter is increased by one.

NEW GUESS GENERATION

The “CFG” and its respective black hit and

white hit count is stored. From this, a new

guess is generated. First, elements from the

CFG (equivalent to the number of black hits)

are selected to remain the same by the

following code on the left:

Then, elements from the CFG (equivalent to the number of black hits) can possibly be moved in the next part

of the code. The counter is present so that if it takes too long to select a white hit (it can actually be impossible

if the wrong black hits are chosen)

At this point, the remaining values that aren’t filled are done so using the Fitness Proportionate Scheme(FPS).

This is based off the sub algorithm provided in Temporel’s algorithm, refer to section 3.4 from the Temporel

paper.

The code for the this selection is shown above. After this stage the code is checked to determine if it is a valid

guess.

GUESS EVALUATOR AND VALIDATE

The guess evaluator does step 3 of Temporel’s algorithm, with all the guesses and feedback being stored in a

vector of vectors. The evaluator chooses a guess and its respective feedback and uses the validate function to

check whether the guess provides the same response if the “potential guess” is correct. Validate works

similarly to give_feedback, simply providing a bool output instead of black hits and white hits.

SCORING RESPONSES

As mentioned earlier, the algorithm requires

comparing feedback to determine which guess is

the CFG , with the scoring system shown in Table

1. Scoring is primarily determined by the total

number of hits, followed by black hits and then

white hits. The following equation is used by the

program to determine the scoring:

𝑅𝑎𝑛𝑘𝑖𝑛𝑔 = 𝑛 × (𝑇𝑜𝑡𝑎𝑙 𝐻𝑖𝑡𝑠) + 𝐵𝑙𝑎𝑐𝑘 𝐻𝑖𝑡𝑠

White hits do not require a specific term in the equation,

as the number of white hits is proportional to the number

of black hits (if the total hits remains the same). Alternatively, if the black hits remain constant changing the

number of white hits will change the total number of hits. The multiplier used is ‘n’ to ensure that the formula

will scale correctly.

After feedback is provided the black and white hits go through ‘scoringFunction’, which will provide an integer

response. The score is then compared to the CFG’s scoring integer to determine whether the CFG is replaced

by the new guess.

PERFORMANCE EVALUATION

TEMPOREL ’S ALGORITHM

The picture above displays a typical hill climbing solution. The initial guess is fairly lucky, providing five white

hits. It can then be seen that five of the first pegs have been randomly chosen, with the remainder being

chosen by the fitness system. The actual output was worse, but this value is then stored and used to compare

any new potential guesses. After this all of the pegs’ colours have been identified, with only their positions

remaining. This is then in two moves, thus completing a 7 x 7 in 6 moves.

In general, temporal’s algorithm is quite impressive, particularly when the lengths are lower. The algorithm’s

output is almost linear with colour. However, the algorithm then starts to struggle, particularly with larger

lengths. One specific case is the 9x9, which would complete the set within ten seconds about two thirds of the

time, and not complete it the remaining third. Due to the “risk” being worth it, a time limit has been

implemented so that if a solution has not been found after nine seconds, Singley’s algorithm is used.

SINGLEY ’S ALGORITHM

All in all, Singley’s algorithm proved to be very easy to

implement and consistently provided an output.

The range of the algorithm is somewhat inconsistent.

When tested over 1000 times the maximum number

of guesses was 88, and the minimum number of

guesses was 32. The theoretical worst case is 122

(refer to the paper for explanation).

The example on the right displays the algorithm in

action, going through the initial list. It has then

selected the number with the largest number of black

hits (in this case 3,5,9 and 10 are all equal but since 3

is the first number it is defined as the base).

After this, one can see that the algorithm initially tries

one, but then sees that the number of black hits then

goes down, meaning that the first index has the value

three.

The algorithm then proceeds to check the next few

numbers, with two and five being avoided as the

initial set of guesses determined that they were not

present in the final set.

IMPROVEMENTS

Perhaps one way to improve the algorithm is to only

send guesses that are theoretically possible. For

example, if we know that there is a single zero in the

final set after our first guess, it makes more sense to

then place a single zero in the second set rather than

the guesses being all ones. This was decided against

because of the time it would then require did not

seem worth the minor improvement.

If the previous black hit values were placed in the

next guess, it could mean that the heuristic could

then be used to rearrange the algorithm. The pre-

processing would change to what was mentioned in

the earlier paragraph, and this could then have been

stored in “guessVec” along with the feedback in

“feedbackVec”. Temporels algorithm would then be

introduced to rearrange the vector, with data about

the different positions being provided by the random

behaviour of how the previous black hits are

arranged. This could result in the attempt count

reducing significantly.

TEMPOREL’S ALGORITHM SWITCHING

As mentioned earlier, a time limit has been implemented so that

if a solution has not been found after nine seconds, Singley’s

algorithm is used. This example is shown on the left. It means

that though taking the risk will cause a greater number of

attempts if unsuccessful, the overall average will decrease

considerably due to the successful attempts. As a result, the

implementation improves efficiency.

The timing method works using the <ctime> library, with the

starttime being initiated in the init function.

The function works extremely effectively, and means that the

latest the program takes to run is around 9.8 seconds, just below

the time limit. It takes full advantage of the time limit provided.

The pace of Singley’s algorithm means that Temporel’s algorithm

has around 9 seconds to calculate the answer.

In reality, the algorithm would be even better if faster, as some

Temporel results do lie within the 9-10 second range. The 0.2

second buffer is there primarily so that the code will always be

within the 10 second margin, even in the worst case scenario.

Length 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1.96 2.49 2.95 3.46 3.812 4.21 4.815 5.274 5.628 6.2 6.75 7.02 7.32 7.84

3 1 2.37 2.908 3.34 3.8 4.212 5.032 5.32 5.465 5.868 6.3 6.77 7.06 7.432 7.88

4 1 2.76 3.21 3.69 4.17 4.64 5.05 5.36 5.75 6.16 6.59 6.88 7.06 7.519 7.92

5 1 3.18 3.58 4.13 4.61 5.05 5.44 5.87 6.12 6.52 6.81 7.01 7.501 7.808 8.04

6 1 3.71 3.93 4.56 5.05 5.51 5.892 6.36 6.77 6.8 7.42 8.24 8.42 8.92 8.65

7 1 4.04 4.48 5.12 5.72 6.44 6.64 7.04 7.92 8.08 10.9 23.315 24.306 25.551 26.7

8 1 4.32 4.56 5.7 6.3 9.8 12.9 13.1 14.3 14 13.8 25.2 27.2 28.284 29.582

9 1 5.4 5.7 9.5 11.2 12 13.8 16.3 20.7 25.939 27.516 28.8 30.1 31.402 32.52

10 1 5.29 5.9 7.1 14.4 15.5 18.7 20.9 26.88 28.89 30.4 31.95 33.22 34.66 35.84

11 1 6.2 6.56 10.24 14.4 23.74 26.106 27.88 29.96 31.909 33.89 35.01 36.82 39.97 39.45

12 1 6.4 9.05 12.8 23.135 26.123 28.439 30.766 32.938 34.928 36.377 38.842 40.054 42.015 43.655

13 1 6.95 8.8 21.503 25.255 28.174 31.118 33.481 35.85 38.327 40.279 42.025 43.557 45.607 47.477

14 1 7.85 19.131 23.127 27.179 30.929 33.666 36.518 39.464 41.795 43.875 45.902 47.995 49.793 51.52

15 1 8.05 20.429 24.932 29.049 32.926 36.371 39.608 42.527 45.014 47.529 49.697 51.727 53.803 55.794

Num

The table above shows the average number of attempts within each step. Each of the averages has been calculated from at

least 250 attempts (with some being calculated from over 5000 iterations) The yellow section denotes the reigion in which

Singley’s algorithm operates from the very beginning. These were determined experimentally. Below is a visual

representation of the attempts distribution

APPENDIX

https://pdfs.semanticscholar.org/2e26/663970ac3e11ba9cd15c2d9671cf6216b5ad.pdf

- Temporel’s Algorithm

https://dspace.library.uu.nl/handle/1874/367005

- Comparison of various algorithms

http://etd.fcla.edu/UF/UFE0010554/singley_a.pdf

- Singley’s Algorithm

https://pdfs.semanticscholar.org/2e26/663970ac3e11ba9cd15c2d9671cf6216b5ad.pdf
https://dspace.library.uu.nl/handle/1874/367005
http://etd.fcla.edu/UF/UFE0010554/singley_a.pdf

