MASTERMNDSOLVER

SPRING TERM ASSIGNMENT

SUSHANTH KOLLURU

Algorithms Considered and Used

After looking through several papers, two algorithms were finalised on. Temporel’s algorithm, which uses a
combination of a ‘heuristic’ and ‘hill climbing’ approaches, is being used for smaller values and Singley’s
algorithm for the larger scaled solution.

Several algorithms were considered, the most obvious of which is Knuth’s. The issue with most of these
algorithms was either scalability or simplicity. Knuth’s algorithm, for example scales very poorly, as calculating
the next guess and running through all the possible solutions simply takes too much time and too many
resources. Temporel’s algorithm was intuitive, scalable and was ne of the better performing algorithms (with
respect to the average number of guesses).

However, for larger sets even the hill climbing heuristic algorithm will struggle with both time and moves. For
this project, a variation of Singley’s algorithm was used. This was primarily down to the speed of the algorithm
as well as the simplicity and efficiency. The algorithm is fairly straightforward to understand and has an
impressive average rate. Within this project, Singley’s algorithm was also used as a ‘backup’ algorithm for
when Temporel’s algorithm takes too long. This aspect will be explained in the section later on.

TEMPOREL'S ALGORITHM

Logic (copied fromthe paper):

1. We submit to the Code maker a random guess that we call the “Current Favourite Guess” (CFG).

2. From the CFG, we induce a new potential code (this is explained in the latter section)

If potential code is not consistent with all previous guesses, go to step 2 otherwise submit it as new
guess.

4. If submitted guess scores [0,0] then suppress from the pool of colours all the colours present in the
last submitted guess. Then find a new random combination (with the new pool of valid colours)
consistent with all previous guesses’ scores and set this new combination as new CFG and submit it to
the code setter.

5. If submitted guess score is as good as or better than CFG score then set this guess to be our new CFG
and also set the new score as best score.

6. If submitted guess scores [4,0], stop otherwise go to step 2.

SINGLEY'S GREEDY SEARCH ALGORITHM

1. Thefirst m turns are to be used to determine the correct number of each colour appearing in the
secret code.
2 The number with the most black hits is then made into the “base”
3. Eachindex in then changed incrementally with values determined by whether a black hit has been
detected by that colour or not, and then a guess is submitted
4 Depending on the feedback, the next stage is determined:
a. Ifthe no of black hits increases, the number that the index has been changed to is in the
right position
b. If the no. of black hits stays the same, the number in the index is yet to be determined and
more numbers need to be tested
c. Ifthe no. of black hits decreases, the “base value” belongs at that index

This is continued till the solution has been found.

GIVE FEEDBACK

Give feedback is a very important part of the program. It works by initially comparing each position from the
guess and the sequence and checking if they’re equal. If so, the black hit count is increased by one and the

elements of the black hits are “used” by being stored in the “ -used” vectors.

void give feedback(const std::vector<int>& attempt, int& black hits, int& white hits){

The next stage calculates white hits, and goes plackth

through each possible combination. The m;m:t
function elementPresence is then used. This
function goes through a vector and returns true
if the tested value is in the vector. If this is
passed, the check is then made to see if the two
elements match. If they do, the white hits

counter is increased by one.

)) & (lelementPresence(], answerElemen

d.push_bac
push_back(

NEWGUESS GENERATION

if(cfgBlack>@){
for (int i = @; i < cfgBlack; i++) {
bool replacement = false;
while(!replacement){
int element = randn(length); The “CFG” and its respective black hit and

white hit count is stored. From this, a new
if(!elementPresence(element, cfgElementsUsed)){

attenpt[element] = cfg[element]; guess is generated. First, elements from the

attemptElementsUsed.push_back(element); CFG (equivalent to the number of black hits)
cfgElementsUsed.push_back(element); .

- are selected to remain the same by the
replacement = true;

following code on the left:

Then, elements from the CFG (equivalent to the number of black hits) can possibly be moved in the next part

of the code. The counter is present so that if it takes too long to select a white hit (it can actually be impossible
if the wrong black hits are chosen)

if(cfgWhite>0){
for (int i = @; i < cfgWhite; i++) {
bool replacement = false;

while(!replacement && counter<1000){

int cfgElement = randn(length);
if(!elementPresence(cfgElement, cfgElementsUsed) && counter<1000){
counter++;
bool selection = false;
while(!selection){
int attemptElement = randn(length);
if(!elementPresence(attemptElement, attemptElementsUsed)){
attempt[attemptElement] = cfg[cfgElement];
attemptElementsUsed.push_back(attemptElement);
cfgElementsUsed.push_back(cfgElement);
selection = true;

}

replacement = true;

std: :vector<int> probabilityDistribution;

for (int i = @; i < num; i++) {
probabilityDistribution.push_back(@);

for (int i = i < length; i++) {
probabilityDistribution[cfg[i]] +=

if(attempt[i] != -1){
probabilityDistribution[attempt[i]]-= 55;

>3

for (int i = @; i < probabilityDistribution.size() ; i#+) {
probabilityDistribution[i] = 18@ - probabilityDistribution[i];
if(probabilityDistribution[i] <= @){
probabilityDistribution[i] = 1;

if(blockedElements.size()>0){
for (int i = @; i < blockedElements.size(); i++) {
probabilityDistribution[blockedElements[i]] = ©;

std: :discrete_distribution<int> probabilities(probabilityDistribution.begin(),probabilityDistribution.end());

for (int i i ¢ length; i++) {
if(attempt[i] == -1){

attempt[i] = probabilities(generator);

At this point, the remaining values that aren’t filled are done so using the Fitness Proportionate Scheme(FPS).
This is based off the sub algorithm provided in Temporel’s algorithm, refer to section 3.4 from the Temporel
paper.

The code for the this selection is shown above. After this stage the code is checked to determine if it is a valid
guess.

GUESS EVALUATOR AND VALIDATE

The guess evaluator does step 3 of Temporel’s algorithm, with all the guesses and feedback being stored in a
vector of vectors. The evaluator chooses a guess and its respective feedback and uses the validate function to
check whether the guess provides the same response if the “potential guess” is correct. Validate works
similarly to give_feedback, simply providing a bool output instead of black hits and white hits.

bool guessEvaluator (const std::vector<std::vector<int>>& gu const std::vector<std::vector<int>>& feedbackVec, const std::vector<int>& potentia

int i
int valid = 1;

Vec[i], potentialGu

wvector<int> td::vector<int> d::vector<int>&

SCORING RESPONSES

As mentioned earlier, the algorithm requires

comparing feedback to determine which guess is

the CFG, with the scoring system shown in Table
1. Scoring is primarily determined by the total

number of hits, followed by black hits and then

white hits. The following equation is used by the

program to determine the scoring:

Ranking = n X (Total Hits) + Black Hits int scoringFunction(int black, int whi:ce-){

White hits do not require a specific term in the equation, return length*(black+white) + black;
as the number of white hits is proportional to the number

of black hits (if the total hits remains the same). Alternatively, if the black hits remain constant changing the
number of white hits will change the total number of hits. The multiplier used is ‘n’ to ensure that the formula
will scale correctly.

After feedback is provided the black and white hits go through ‘scoringFunction’, which will provide an integer
response. The score is then compared to the CFG’s scoring integer to determine whether the CFG is replaced
by the new guess.

PERFORMANCE EVALUATION

TEMPOREL'S ALGORITHM

The picture above displays a typical hill climbing solution. The initial guess is fairly lucky, providing five white
hits. It can then be seen that five of the first pegs have been randomly chosen, with the remainder being
chosen by the fitness system. The actual output was worse, but this value is then stored and used to compare
any new potential guesses. After this all of the pegs’ colours have been identified, with only their positions
remaining. This is then in two moves, thus completinga 7 x 7 in 6 moves.

In general, temporal’s algorithm is quite impressive, particularly when the lengths are lower. The algorithm’s
output is almost linear with colour. However, the algorithm then starts to struggle, particularly with larger
lengths. One specific case is the 9x9, which would complete the set within ten seconds about two thirds of the
time, and not complete it the remaining third. Due to the “risk” being worth it, a time limit has been
implemented so that if a solution has not been found after nine seconds, Singley’s algorithm is used.

enter length of sequence and number of possible values:
7

4 23460
black pegs: white pegs:
attempt:

black pegs: white pegs:
attempt:

black pegs: white pegs:
attempt:

black pegs: white pegs:
attempt:

black pegs: white pegs:

attempt:
536046

black pegs: 7 white pegs: ©

he solver has found the sequence in 6 attempts
he sequence generated by the code maker was:
536046

Elapsed time: ©.044876 s

SINGLEYSALGORTHM

All'in all, Singley’s algorithm proved to be very easy to
implement and consistently provided an output.

The range of the algorithm is somewhat inconsistent.
When tested over 1000 times the maximum number
of guesses was 88, and the minimum number of
guesses was 32. The theoretical worst case is 122
(refer to the paper for explanation).

The example on the right displays the algorithm in
action, going through the initial list. It has then
selected the number with the largest number of black
hits (in this case 3,5,9 and 10 are all equal but since 3
is the first number it is defined as the base).

After this, one can see that the algorithm initially tries
one, but then sees that the number of black hits then
goes down, meaning that the first index has the value
three.

The algorithm then proceeds to check the next few
numbers, with two and five being avoided as the
initial set of guesses determined that they were not
present in the final set.

IMPROVEMENTS

Perhaps one way to improve the algorithm is to only
send guesses that are theoretically possible. For
example, if we know that there is a single zero in the
final set after our first guess, it makes more sense to
then place a single zero in the second set rather than
the guesses being all ones. This was decided against
because of the time it would then require did not
seem worth the minor improvement.

If the previous black hit values were placed in the
next guess, it could mean that the heuristic could
then be used to rearrange the algorithm. The pre-
processing would change to what was mentioned in
the earlier paragraph, and this could then have been
stored in “guessVec” along with the feedback in
“feedbackVec”. Temporels algorithm would then be
introduced to rearrange the vector, with data about
the different positions being provided by the random
behaviour of how the previous black hits are
arranged. This could result in the attempt count
reducing significantly.

222222
white pegs:

333333
white pegs:

444444
white pegs:

555555
white pegs:

666666
white pegs:

777777
white pegs:

8 88 88 8
white pegs:

999999
white pegs:

10 10 10 1@
white pegs:

11 11 11 11
white pegs:

12 12 12 12
white pegs:

13 13 13 13
white pegs:

14 14 14 14

white pegs:

333333
white pegs:

2333333

white pegs:

333333
white pegs:

333333
white pegs:

22
(%]

33
e

4 4
0

55
%]

6 6
e

10

(%]

(%]

12

(%]

e

14

(%]

33
P

TEMPOREL’S ALGORITHM SWITCHING

enter length of sequence and nu

8 7 2

e 47
pi

2 2
white

33
white

4 4 4
@ white

5 5
white

6 6 6
@ white

7 7
white

8 8
white

As mentioned earlier, a time limit has been implemented so that
if a solution has not been found after nine seconds, Singley’s
algorithm is used. This example is shown on the left. It means
that though taking the risk will cause a greater number of
attempts if unsuccessful, the overall average will decrease
considerably due to the successful attempts. As a result, the
implementation improves efficiency.

The timing method works using the <ctime> library, with the
starttime being initiated in the init function.

finish = std::time(9);
timetaken = std::difftime(finish, start);

if(timetaken > 9){
switchToSingley = true;

cfg.clear();

attempt.clear();

The function works extremely effectively, and means that the
latest the program takes to run is around 9.8 seconds, just below
the time limit. It takes full advantage of the time limit provided.
The pace of Singley’s algorithm means that Temporel’s algorithm
has around 9 seconds to calculate the answer.

In reality, the algorithm would be even better if faster, as some
Temporel results do lie within the 9-10 second range. The 0.2
second buffer is there primarily so that the code will always be
within the 10 second margin, even in the worst case scenario.

Length

2

1
1.96
2.37
2.76
3.18
3.71
4.04
4.32
5.4
5.29
6.2
6.4
6.95
7.85
8.05

W o NOGOOUAE WNR

B R R R
B WN RO
R R R R R RRRRRRRRRRR

=
wv

3

1

2.49
2.908
3.21
3.58
3.93
4.48
4.56
5.7

5.9
6.56
9.05
8.8
19.131
20.429

4
1

2.95
3.34
3.69
4.13
4.56
5.12
5.7

9.5

7.1
10.24
12.8
21.503
23.127
24.932

5

1

3.46
3.8
4.17
4.61
5.05
5.72
6.3
11.2
14.4
14.4
23.135
25.255
27.179
29.049

6

1

3.812
4.212
4.64
5.05
5.51
6.44
9.8

12

15.5
23.74
26.123
28.174
30.929
32.926

7

1

4.21
5.032
5.05
5.44
5.892
6.64
12.9
13.8
18.7
26.106
28.439
31.118
33.666
36.371

Num
8
1
4.815
5.32
5.36
5.87
6.36
7.04
13.1
16.3
20.9
27.88
30.766
33.481
36.518
39.608

9

1

5.274
5.465
5.75
6.12
6.77
7.92
143
20.7
26.88
29.96
32.938
35.85
39.464
42.527

10

1

5.628
5.868
6.16
6.52
6.8
8.08
14
25.939
28.89
31.909
34.928
38.327
41.795
45.014

11

1

6.2

6.3
6.59
6.81
7.42
10.9
13.8
27.516
30.4
33.89
36.377
40.279
43.875
47.529

12

1

6.75
6.77
6.88
7.01
8.24
23.315
25.2
28.8
31.95
35.01
38.842
42.025
45.902
49.697

13

1

7.02
7.06
7.06
7.501
8.42
24.306
27.2
30.1
33.22
36.82
40.054
43,557
47.995
51.727

14

7.32
7.432
7.519
7.808

8.92

25.551
28.284
31.402

34.66

39.97
42.015
45.607
49.793
53.803

15

7.84
7.88
7.92
8.04
8.65
26.7
29.582
32.52
35.84
39.45
43.655
47.477
51.52
55.794

The table above shows the average number of attempts within each step. Each of the averages has been calculated from at
least 250 attempts (with some being calculated from over 5000 iterations) The yellow section denotes the reigion in which

Singley’s algorithm operates from the very beginning. These were determined experimentally. Below is a visual
representation of the attempts distribution

60

50

40

30

20

10

N

N

ol

i;
&

60

50

40

30

20

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

APPENDIX
https://pdfs.semanticscholar.org/2e26/663970ac3e11ba9cd15c2d9671cf6216b5ad.pdf

- Temporel’s Algorithm

https://dspace.library.uu.nl/handle/1874/367005

- Comparison of various algorithms

http://etd.fcla.edu/UF/UFE0010554/singley a.pdf

- Singley’s Algorithm

https://pdfs.semanticscholar.org/2e26/663970ac3e11ba9cd15c2d9671cf6216b5ad.pdf
https://dspace.library.uu.nl/handle/1874/367005
http://etd.fcla.edu/UF/UFE0010554/singley_a.pdf

